406 research outputs found

    The New Screen Time: Computers, Tablets, and Smartphones Enter the Equation

    Get PDF
    Emerging technologies attract children and push parents\u27 and caregivers\u27 abilities to attend to their families. This article presents recommendations related to the new version of screen time, which includes time with computers, tablets, and smartphones. Recommendations are provided for screen time for very young children and those in middle and late childhood. Recommendations for screen time for adults—particularly important when adults are around their children—are included as well. In addition, the article provides information about integrating the recommendations into practice with Extension and other community audiences

    A future-proof architecture for management and orchestration of multi-domain NextGen networks

    Get PDF
    The novel network slicing paradigm represents an effective turning point to operate future wireless networks. Available networking and computational resources may be shared across different (instantiations of) services tailored onto specific vertical needs, envisioned as the main infrastructure tenants. While such customization enables meeting advanced Key Performance Indicators (KPIs) introduced by upcoming 5G networks, advanced multi-tenancy approaches help to abate the cost of deploying and operating the network. However, the network slicing implementation requires a number of non-trivial practical considerations, including e.g. (i) how resource sharing operations are actually implemented, (ii) how involved parties establish the corresponding agreement to instantiate, operate and terminate such a sharing or, (iii) the design of functional modules and interfaces supporting these operations. In this paper, we present a novel framework that unveils proper answers to the above design challenges. While existing initiatives are typically limited to single-domain and single-owner scenarios, our framework overcomes these limitations by enlarging the administrative scope of the network deployments fostering different providers to collaborate so as to facilitate a larger set of resources even spread across multiple domains. Numerical evaluations confirm the effectiveness and efficiency of the presented solution.This work was supported in part by the 5G-MoNArch Project, in part by the Phase II of the 5th Generation Public Private Partnership (5G-PPP) Program, in part by the European Commission within the Horizon 2020 Framework Program under Grant 761445, in part by the 5G-MoNArch Project builds on the results of the 5G-PPP Phase I Project 5G-NORMA, and in part by the European Union Horizon 2020 Project 5G-CARMEN under Grant 825012. The work of UC3M has also received funding from the Horizon 2020 Programme under Grant 815074 - 5G EVE.Publicad

    Discovery of a Powerful >1061 erg AGN Outburst in the Distant Galaxy Cluster SPT-CLJ0528-5300

    Get PDF
    We present ~103 ks of Chandra observations of the galaxy cluster SPT-CLJ0528-5300 (SPT0528, z = 0.768). This cluster harbors the most radio-loud (L 1.4GHz = 1.01 × 1033 erg s−1 Hz−1) central active galactic nucleus (AGN) of any cluster in the South Pole Telescope (SPT) Sunyaev–Zeldovich survey with available X-ray data. We find evidence of AGN-inflated cavities in the X-ray emission, which are consistent with the orientation of the jet direction revealed by Australia Telescope Compact Array radio data. The combined probability that two such depressions—each at ~1.4–1.8σ significance, oriented ~180° apart and aligned with the jet axis—would occur by chance is 0.1%. At gsim1061 erg, the outburst in SPT0528 is among the most energetic known in the universe, and certainly the most powerful known at z > 0.25. This work demonstrates that such powerful outbursts can be detected even in shallow X-ray exposures out to relatively high redshifts (z ~ 0.8), providing an avenue for studying the evolution of extreme AGN feedback. The ratio of the cavity power (Pcav=(9.4±5.8)×1045{P}_{\mathrm{cav}}=(9.4\pm 5.8)\times {10}^{45} erg s−1) to the cooling luminosity (L cool = (1.5 ± 0.5) × 1044 erg s−1) for SPT0528 is among the highest measured to date. If, in the future, additional systems are discovered at similar redshifts with equally high P cav/L cool ratios, it would imply that the feedback/cooling cycle was not as gentle at high redshifts as in the low-redshift universe

    Quantifying the age structure of free-ranging delphinid populations : testing the accuracy of Unoccupied Aerial System photogrammetry

    Get PDF
    This study was funded by NOAA-PIFSC and RCUH JIMAR (NA19NMF4720181, NA16NMF4320058), CIMAR (NA21NMF4320043), and the Office of Naval Research (N000142012624).Understanding the population health status of long-lived and slow-reproducing species is critical for their management. However, it can take decades with traditional monitoring techniques to detect population-level changes in demographic parameters. Early detection of the effects of environmental and anthropogenic stressors on vital rates would aid in forecasting changes in population dynamics and therefore inform management efforts. Changes in vital rates strongly correlate with deviations in population growth, highlighting the need for novel approaches that can provide early warning signs of population decline (e.g., changes in age structure). We tested a novel and frequentist approach, using Unoccupied Aerial System (UAS) photogrammetry, to assess the population age structure of small delphinids. First, we measured the precision and accuracy of UAS photogrammetry in estimating total body length (TL) of trained bottlenose dolphins (Tursiops truncatus). Using a log-transformed linear model, we estimated TL using the blowhole to dorsal fin distance (BHDF) for surfacing animals. To test the performance of UAS photogrammetry to age-classify individuals, we then used length measurements from a 35-year dataset from a free-ranging bottlenose dolphin community to simulate UAS estimates of BHDF and TL. We tested five age classifiers and determined where young individuals (Publisher PDFPeer reviewe

    Role of iron, light, and silicate in controlling algal biomass in subantarctic waters SE of New Zealand

    Get PDF
    Phytoplankton processes in subantarctic (SA) waters southeast of New Zealand were studied during austral autumn and spring 1997. Chlorophyll a (0.2–0.3 μg L−1) and primary production (350–650 mg C m−2 d−1) were dominated by cells 1 nmol kg−1, there was little evidence of Fe-stressed algal populations, and Fυ/Fm approached 0.60 at the STC. In addition to these trends, waters of SA origin were occasionally observed within the STC and north of the STC, and thus survey data were interpreted with caution. In vitro Fe enrichment incubations in SA waters resulted in a switch from flavodoxin expression to that of ferredoxin, indicating the alleviation of Fe stress. In another 6-day experiment, iron-mediated increases in chlorophyll a (in particular, increases in large diatoms) were of similar magnitude to those observed in a concurrent Si/Fe enrichment; ambient silicate levels were 4 μM. A concurrent in vitro Fe enrichment, at irradiance levels comparable to the calculated mean levels experienced by cells in situ, resulted in relatively small increases (approximately twofold) in chlorophyll a. Thus, in spring, irradiance and Fe may both control diatom growth. In contrast, during summer, as mean irradiance increases and silicate levels decrease, Fe limitation, Fe/Si colimitation, or silicate limitation may determine diatom growth

    Essentials in Accident and Emergency Medicine Radiation Injury: Response and Treatment

    Get PDF
    The discovery of radiation has enabled great healthcare advances as well as catastrophic injury. This paper reviews major historical incidents of public radiation exposure and the evolution of standards affecting today’s public and health care workers. Current patient care and response assessment to radiation exposure are reviewed. The strengths of modern radiation therapy and the need for continuous process improvements to ensure optimal patient care and secure safe environments are identified. The discovery of radiation has brought significant scientific achievements as well as catastrophic injury

    Deep \u3cem\u3eChandra\u3c/em\u3e, \u3cem\u3eHST\u3c/em\u3e-Cos, and MegaCam Observations of the Phoenix Cluster: Extreme Star Formation and AGN Feedback on Hundred Kiloparsec Scales

    Get PDF
    We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously undetected filaments of star formation, extending to radii of ~50–100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2 x 109 M⊙), young (~4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 ± 50 M⊙ yr−1. We report a strong detection of O ᴠɪ λλ1032,1038, which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (\u3e1000 M⊙ yr−1) from the cooling intracluster medium (ICM). We confirm the presence of deep X-ray cavities in the inner ~10 kpc, which are among the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2–7 x 1045 erg s−1. We provide evidence that the active galactic nucleus inflating these cavities may have only recently transitioned from quasar-mode to radio-mode, and may currently be insufficient to completely offset cooling. A model-subtracted residual X-ray image reveals evidence for prior episodes of strong radio-mode feedback at radii of ~100 kpc, with extended ghost cavities indicating a prior epoch of feedback roughly 100 Myr ago. This residual image also exhibits significant asymmetry in the inner ~200 kpc (0.15R500), reminiscent of infalling cool clouds, either due to minor mergers or fragmentation of the cooling ICM. Taken together, these data reveal a rapidly evolving cool core which is rich with structure (both spatially and in temperature), is subject to a variety of highly energetic processes, and yet is cooling rapidly and forming stars along thin, narrow filaments

    Intratumoral injection of BCNU in ethanol (DTI-015) results in enhanced delivery to tumor – a pharmacokinetic study

    Full text link
    Solvent facilitated perfusion (SFP) has been proposed as a technique to increase the delivery of chemotherapeutic agents to tumors. SFP entails direct injection of the agent into the tumor in a water-miscible organic solvent, and because the solvent moves easily through both aqueous solutions and cellular membranes it drives the penetration of the solubilized anticancer agent throughout the tumor. To test this hypothesis, we compared the pharmacokinetics (PK) of 14 C-labeled 1,3-bis-chlorethyl-1-nitrosourea (BCNU) in intra-cerebral 9L rat gliomas after intravenous (IV) infusion in 90% saline –10% ethanol or direct intratumoral (IT) injection of 14 C-BCNU in 100% ethanol (DTI-015). Treatment with DTI-015 yielded a peak radioactive count (Cmax) for the 14 C label that was 100–1000 fold higher in the tumor than in all other tissues in addition to a concentration in the tumor that was 100-fold higher than that achieved following IV infusion of 14 C-BCNU. Pathologic and auto-radiographic analysis of tissue sections following IT injection of 14 C-BCNU in ethanol into either tumor or normal rat brain revealed both an enhanced local volume of distribution and an increased concentration of BCNU delivered to tumor compared to non-tumor bearing brain. To investigate the mechanism behind the SFP of BCNU to the tumor both dynamic contrast and perfusion MRI were performed on 9L tumors before and after treatment and demonstrated a decrease in tumor perfusion following IT injection of DTI-015. Finally, initial PK of patient blood samples following administration of DTI-015 into relapsed high-grade glioma indicated a 20-fold decrease in systemic exposure to BCNU compared to IV infusion of BCNU providing further evidence for the enhanced therapeutic ratio observed for DTI-015.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45396/1/11060_2004_Article_5675.pd

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson's Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia
    • …
    corecore